阅读清单
基础(必读)
- 完成Python和PyTorch的基础知识学习,教程包括代码
- 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(https://zhuanlan.zhihu.com/p/49271699)
- 何凯明MIT第一课Deep Learning Bootcamp
- 2023何凯明未来科学家大会报告
- 理解《统计学习方法》第一章中的模型、策略、算法。
- 复旦大学邱锡鹏教授的《神经网络与深度学习》
##这些经典内容可能需要反复阅读,常翻出来看看,温故而知新
深度学习经典论文(必读)
- Deep residual learning for image recognition
- Efficient Estimation of Word Representations in Vector Space
- Focal loss for dense object detection
- Momentum Contrast for Unsupervised Visual Representation Learning
- Non-local Neural Networks
- Attention Is All You Need
- Learning Transferable Visual Models From Natural Language Supervision
- ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision
- Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
- Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
实践代码
推荐课程
- Carnegie Mellon University course 11777: Multimodal Machine Learning
- Carnegie Mellon University course 11776: Multimodal Affective Computing
常看常新
选读论文
多模态情感计算
- Misa: Modality-invariant and-specific representations for multimodal sentiment analysis
- Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis
- CH-SIMS: A Chinese Multimodal Sentiment Analysis Dataset with Fine-grained Annotations of Modality
- Awesome Multimodal Sentiment Analysis
长尾学习
- Feature space augmentation for long-tailed data
- Long-tailed Recognition by Routing Diverse Distribution-Aware Experts
- BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition
持续学习
- iCaRL: Incremental Classifier and Representation Learning
- Gradient episodic memory for continual learning
- Large scale incremental learning
半监督学习
- FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidenc
- Mixmatch: A holistic approach to semi-supervised learning
- Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results